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A Prandtl transformation method is applied to study the transient free convection of 
non-Newtonian fluids along a wavy vertical plate in the presence of a magnetic field. A 
simple transformation is proposed to transform the governing equations into the 
boundary-layer equations and solved numerically by the cubic spline approximation. A 
simple coordinate transformation is employed to transform the complex wavy surface to a 
vertical,flat plate for a constant wall temperature by the numerical method. The effects of 
the magnetic field parameter, the wavy geometry and the non-Newtonian nature of the 
fluids on the flow characteristics and heat transfer are discussed in detail. © 1996 by 
Elsevier Science Inc. 
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I n t r o d u c t i o n  

The free convection of a non-Newtonian fluid has been pre- 
sented by many investigators because of its considerable practical 
applications. Because most non-Newtonian fluids are highly vis- 
cous and have a large Prandtl number, similarity solutions have 
been obtained for such fluids under various thermal boundary 
conditions (Acrivos 1960; Lee and Ames 1966; Na and Hansen 
1966; Chen 1974). Kawase and Ulbrecht (1984) employed an 
integral method to analyze the steady-state natural convection of 
non-Newtonian fluids. They assumed a very thin thermal bound- 
ary layer and employed a velocity profile taken from forced-con- 
vection analysis. A review of this subject was given by Shenoy and 
Mashelkar (1982). They assumed a steady-state, non-Newtonian 
Prandtl number of unity and neglected the inertia term. Williams 
et al. (1987) assumed wall temperatures are a function of time 
and position and found nearly similar solutions for different wall 
temperature distribution. Nanbu (1971) estimated the limit of 
pure conduction for unsteady free convection on a vertical flat 
plate. In addition, natural convection of non-Newtonian fluids 
over an external surface was reported by Som and Chen (1984), 
Kleinstreuer et al. (1987), and Huang (1989). All previous analy- 
ses and experimental studies are available with different heating 
conditions for various kinds of geometries and for a variety of 
fluids. However, very few studies demonstrate the effects of 
complex geometries on such natural convection as a wavy s u r -  
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face, which is frequently used in finned heat exchangers and heat 
transfer enhancement devices. Yao (1983) proposed a single 
transformation to transform a complex geometry into a simple 
shape for which the equations of natural convection can be 
solved by a finite difference method. The numerical results 
showed that the frequency of the local heat transfer rate is twice 
that of the wavy surface. The transient convection heat transfer 
of a power-law fluid along a vertical wall was presented the first 
time by Haq et al. (1988). A numerical solution of the appropri- 
ate unsteady boundary-layer equations was solved numerically. 
The steady-state laminar natural convection heat transfer of 
power-law non-Newtonian fluids along a wavy vertical plate was 
investigated by Kim and Chen (1991). A transformation method 
was applied to this problem. The effects of Prandtl number, 
dimensionless amplitude of the wavy plate, and non-Newtonian 
flow index were examined in detail. 

All previous analyses and experimental studies considered 
only flat plate or simple two-dimensional (2-D) bodies, but little 
has been done on non-Newtonian fluid heat transfer from a wavy 
surface with an imposed magnetic field. The action of a magnetic 
field on the fluid' has many practical applications; e.g., the 
metals-processing industry includes the control of liquid metals 
in continuous casting processes, plasma welding, and the nuclear 
industry. Mathematical modeling of the magnetohydrodynamics 
problem are desirable. In the present study, the system of equa- 
tions describing the transient free convection on a wavy surface 
is extended to a non-Newtonian fluid, including effect of the 
magnetic field, and solved numerically. The results of dimension- 
less velocity fields, temperature profiles, and heat transfer are 
obtained for this case. Effects of the wavy geometry and the 
non-Newtonian nature of the fluids on the flow and heat transfer 
characteristics are examined in detail. 

0142-727X/96/S15.00 
PII S0142-727X(96)00061-9 



Analysis 

Electromagnetic concepts 

It is well known that an electrical conductor moving in a mag- 
netic field generates an electromotive force (enid that is propor- 
tional to its speed of motion and the magnetic field's strength. 
For the coupling between the fluid flow equations and the 
electromagnetic fields equations to occur, the fluid must be 
electrically conducting, as in the case of liquid metals or gases. 
The field of magnetohydrodynamics is complex, because it in- 
volves the solution of both the Navier-Stokes equations charac- 
terizing fluid flow and Maxwell's equations for the magnetic 
field. In magnetofluidmechanics, Maxwell's equations are pre- 
sented as follows: 

V.B = 0 (1) 

V .D = 0 (2) 

V × H = J  (3) 

OB 
V x E = - - -  (4) 

Ot 

The magnetic flux density B is expressed by 

13 = Ixe H (5) 

D = eE (6) 

where J is the current density, Ixe is the magnetic permeability, 
and E is the electric field intensity. By Ohm's law, the total 
current flow can be defined as 

J = ~ ( E +  V X B )  (7) 

where tr = electrical conductivity. 
By combining the above equations, with H replaced by B/l~e, 

the following induction equation is obtained: 

OB 
- -  = V X ( V X B )  + vmVZB (8) 
at 

where vm = 1 / o w  e 
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In momentum equation, we have to include the electromag- 
netic force, Fro, which is 

F m = J × B  = ( r ( V × B )  XB (9) 

Governing equations 

Consider a steady-state natural convection of non-Newtonian 
fluids along a wavy vertical plate imposed on a magnetic field. 
The physical model and coordinate system are presented in 
Figure 1, where (u,v) are velocity components in (x,y) direc- 
tions. The surface of the plate is described by y = ~(x), where 
~(x) is an arbitrary geometric function. The temperature of the 
plate is held at a constant value T w, which is higher than the 
ambient temperature T=. In the present study, the electrically 
conducting fluids are assumed to be a non-Newtonian fluids, with 
(2-D) incompressible and the magnetic Reynolds number is small. 

Figure I 
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Notation 

B magnetic flux density 
Cp specific heat 
P electric displacement flux 
E electric field intensity 
Ec Eckert number 
Gr Grashof number 
H magnetic field strength 
J current density 
K thermal conductively 
Mg r Mg2N~r 1/z(z-n) 
Nu Nusselt number 
Ng r generalized Grashof number 
P Pressure 
Pr Prandtl number 
Npr generalized Prandtl number 
T temperature 
t time 
u, v velocity components in (x, y) directions 
U, V dimensionless velocity components 
x, y coordinates 
X, Y dimensionless coordinates 

Greek 

et amplitude wave 
13 thermal expansion coefficient 

surface geometry function 
0 dimensionless temperature 
tx viscosity 
[.1, e magnetic permeability 
p density 
(r electrical conductivity 
T dimensionless time 

Superscripts 

- -  dimensionless quantity 
' derivative with respect to x 

Subscripts 

w wall 
oo free stream 
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The properties of the fluids are assumed to be constant, except 
for the density in the buoyancy force term. A magnetic field with 
a constant magnetic flux density Bo is applied. In magnetofluid- 
mechanics, fluid motion is governed by the laws of conservation 
of mass, momentum, and energy. The equation of continuity 
remains unchanged. The momentum and energy equations must 
be modified from Maxwell's field equation and Ohm's law. Based 
on the above assumptions, the governing equations of continuity, 
momentum, and energy for the steady-state natural convection of 
non-Newtonian fluids along a wavy vertical plate, including the 
magnetic field effect, are 

Ou i)v 
+ - -  = 0 ( 1 0 )  

Ox ay 

au au au 1 aP 1 [ aZxx a%y ) 
~ + u - - + v  + 
at ax ay p a x  p I, Ox ay ] 

+ g f 3 ( T -  T=) - u ( l l a )  
P 

av av av 1 aP 1 [ a.ry x a,ryy 
- -  -F u - -  + v + . ( l lb )  
at Ox ay p oy p~ Ox ay ] 

aT aT aT ( a Z T  a2T I crB~ 
~ + t / - -  + p ~  = O r  + + - - U  2 
ot ox oy o-- J 

(12) 

Prandt l 's  t ransposi t ion theorem 

The first step is to transform the irregular wavy surface into a 
fiat surface by use of Prandtl's transposition theorem, Yao (1988). 
The theorem is that the flow is displaced by the amount of the 
vertical displacement of an irregular solid surface, and the verti- 
cal component of the velocity is adjusted according to the slope 
of the surface. The form of the boundary-layer equations is 
invariant under the transformation, and the surface conditions 
can be applied on a transformed flat surface. This allows the 
boundary conditions to be easily incorporated into any numerical 
method. To transform the above governing equations, the follow- 
ing dimensionless quantities are introduced. 

X 
2 -- - (13a) 

/ 

y - ~  
_ _ / V 1 / 2 ( n  + 1) -- / _.g (13b) 

U U 
m = - -  (13c) 

v~13ar .~ 

v -- [i'u v -- ~'u 
= . ~ ] l / 2 ( n  + 1) = _ _  i ~ r l / 2 ( n  + 1) (13d) 

~ * "gr - "gr 
U ~  

d,3 dg ,5 
a' = g = -- (13e) 

dx d x '  / 

P P 
P (13f) 

p f  gf3A T pu 2 

T -  T= t u j  
0 Tw-T= '  i _ /  f / (13g) 

V gf3At 

p2 f n  + 2[ g~A T ]2-n 

Ng r = m2 (13h) 

Fn \ 2 / ( 1  + n) 

(13i) 

where N~ and Np, are the generalized Orashof number and the 
generalized Prandtl number, respectively. Using Equation 13b, 
we transform the wavy surface into a fiat surface. Neglecting 
small order in Nv the governing equations are transformed to 

am aT 
- -  + - -  = o ( 1 4 )  
a2 a~ 

an am an aP aP + 0 + (1 + 
a-~- + m-~ + ~  a9 a2 + a'N~/2("+ ~ ay a'2) 

X A I  c'}m n-l ~2_l _m2N1/2(2-n) m 
a.~[la.~l oyj 

(15) 

aP 
a"m 2 + a 'o  = ~ ' - -  - (1 + a '2) 

02 

xN~/a"+ I) aP a-y- - (1 + 8 '2) 

XNffW,+ l) ap _ _  + a,M~NG w2(2-.)m 
ay (16) 

a0 a0 00 1 0 2 0  

--:--+at m--+02 v - - = ~ r  ( 1 0 y  + ~,2) ~ + M 2 E c G r  -1/2 m 2 (17) 

where 

cIB2p 1/(2-n)ff2/(2-n) M2 GrB2~2 
M2 = P ml/(2-n) , pv (18) 

The transformed momentum Equation 15 and 16 can be com- 
bined into one equation by neglecting the pressure gradient. The 
resulting dimensionless governing equations are: 

n + 1 au  aU 
- - U + n  [2(n + 1)X ]-a--~ - Y - ~  

a V  
+ [2(n + 1)X] ("- 1)(2n + 1 ) / 2 n ( n  + 1 )  = 0 (19) 

aY 
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aU 
- -  + [2(n + 1)X]a/"U OU + {[2(n + 1)X](1-n)/2n(n+l)v 
O'r OX 

](1 -,,)/,, OU 
- [ 2 ( n  + 1 ) X  U Y } - ~  

= (1 + 8 '2 ) - ' {0  -M2N;a/z(2-n)[Z(n + 1)x ]Wn}u 2 

- { ~ - [ 2 ( n + l ) X ]  ( ' - ' ) /n 

1 } 
+ ~ 8 ' 8 " [ 2 ( n  + 1)X] 1/" U 2 

( 1 + ~ 5 )  
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X [2(n + 1)X] (" - 1)/2.(.+ z) OO 
aT 

+ [2(n + 1)X] (3n+ 1)/2n(n+ 1) U 00 
OX 

O0 (1 + 2nX1 - n ) / 2 n ( n  + 1) 
+ { V -  [2(n + 1)X] UY} _--~. 

01( 

020 
= p r - l ( l  + 8 '2)  - 

a y  2 

(20) 

+ M 2 E c G r -  1/212(n + 1)X] (2n + ])ln(n + 1)U2 (21) 

Table 1 Function of F, G, and S 

Gu 

S u 

O k O k 
O~_[2(n+I )X i ]VnU ~ q -  i - L j  AT 

Xi -- X i -  1 

1[2(n+l)Xi](,-n~/nll* Y Vi' } vi j~ j [ 2 ( n +  l )X i ] (n_ lV2nin+l )  AT 

1 + 8  ,2 At 

Pr [2 (n+  1 )Xi ](n- 1)/2n(n+1) 

U~ - [2(n + 1 )Xi] (1 - n)/, V ilk m/ l*  A "j --i i '"--i j _T 
AT k 2 - + I ~72{e i j  - Mg Ng r 1/2(2 - n)[2(n + 1)xi]l/2nuk 

I °+' " '  I -U~. 2 [ 2 ( n + l l X i l ( 1 - n y n + ~ [ 2 ( n + l ) X i  ]l/n AT 
n 1 +8  i 

U* U k } ) )( 11/n//k "ii ~_ v i -  1. j - [ 2 ( n + 1 . - - i -  " i j  y x, At  / { 1 - [ 2 ( n + l ) X i ]  (1.ram 
" ' i  -- " ' i -  1 

v,.mu~ a~} 
1-n k 

[ 2 (n+  1 )x i] " uuYJa" - [ 2 (n+  1 )Xi]  (1 -nV2"(n+l)V~'AT 

,2 ImUkl"-  1 --imUkj_ 1in -1 I 
+ ( 1 + 8 /  ) ~.-- y--~-._ ~ A'r]/{1 - [ 2 ( n + l ) X i  ](,-n)/n 

~,,.,u,~ a.~} 
(1 + 8"2)lmUkl" - 1 A,r/{1 -- [2 (n+ 1)X/] (1- m/'YjmU~ Am} 

Table 2 Comparison with the results of Yao (1983) for different grid number 

Grid number 41 "41 41 *46 41 "81 
Local Nusselt 

number 0.5693 0.5672 0.5662 
Grid number 61 "41 61 "61 61 "81 
Local Nusselt 

number 0.5693 0.5673 0.5662 
Grid number 81 "41 81 "61 81 "81 
Local Nusselt 

number 0.5694 0.5673 0.5663 
Grid number 101 "41 1 O1 "61 101 "81 
Local Nusselt 

number 0.5694 0.5674 0.5664 
Grid number 
(Yao 1983) 161 "501 
Local Nusselt 0.5671 ( X =  2.0); 
number Pr= 1.0; Mgr = 0.0; e=O.O; n = 1.0; X=4 .0 ;  Y= 10.0 

41"101 

0.5656 
61"101 

0.5657 
81"101 

0.5657 
101"101 

0.5658 
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where 

X = 2 (22a) 

Y = . ~ / [ 2 ( n  + 1)X]  1/2(n+ 1) (22b) 

U = ~ / [2 (n  + 1 ) X ]  1/2n (22c) 

V =  [2(n + 1)X]  1/(2n + 1)~ (22d) 

0 = 0, "r = ~/[2(n + 1 ) X ]  1/2n (22e) 

with the corresponding boundary conditions 

X = 0 ,  U = 0  = 0  

at Y = 0, U = V = 0, 0 = 1 (23) 

as Y ~ 0% U = 0 = 0 (24) 

The local Nusselt number and the averaged Nusselt number can 
be determined by using Newton's cooling law and Fourier's law, 

Nux=  - [ N s r / 2 ( n +  1)X]1/2("+~)(1+ ~'~)1: ~--~lY=o (25) 

1 X ~ x =  -- -~ fo [ Ngr/2(n + l)x]l/2(n+ l)(l q- ~'2)l/2~yIy=o dX 

(26) 

where 

S = foX[1 q- ~ '2 ]  1/2 d x  

N u m e r i c a l  a n a l y s i s  

The governing equations with the corresponding constant tem- 
perature boundary condition were solved by using the cubic 
spline approximation method (Rubin and Graves (1975). The 
SADI procedure was applied to perform the numerical computa- 
tion. Using the spline formulation, a natural convection bound- 
ary-layer equation is written in the following form. 

d~n.+ 1 = Fi: + Gij(m~b )i~ + 1 n + 1 ,j + Sij(M~b)i ] (27) 

where 

(m(b)~.+ 1 ~ - ~  1ii (28) 

• O2(l ) • n + l  

(M~ )~i+ l = ( - ~  ) ij (29)  

and function of F, G, and S are shown in Table 1. 
In this study, the iteration process is continued until the 

convergence criterion, is achieved 

I ,h.-3-1 _ ,h-. I 
" r t j  n "~t] (30) 

R e s u l t s  a n d  d i s c u s s i o n  

The effects of the magnetic field parameter M~, the wavy 
geometry % and the power-law index n on flow characteristics 
and heat transfer have been studied. To verify the numerical 
accuracy of the solution, numerical results were first obtained for 
the case of Newtonian fluid (n = 1.0) with constant wall tempera- 
ture and compared to those of reported by Yao (1983), as shown 
in Table 2, which is a comparison of the present calculation of 
local Nusselt number with different grid numbers. The calculated 

(a) 
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= =0.1 
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I 
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Y ( X =  1.0) 

(b) 

0.30 

, = 3 m l  (steadystate) Pr=O.l 

lV~r= 1.o 

u 

0.10 

0.00 
0.00 3.00 6.00 9.00 12.00 15.00 

Y ( X = I . O )  

Figure 2 (a) Transient  dimensionless axial velocity distribu- 
tion for ~ = 0 . 1 ,  P r : O . 1 ,  and n = O . 8 ;  (b) transient dimen- 
sionless axial velocity distribution for c¢----0.1, Pr=O.1,  and 
n = 1 . 2  
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Figure 3 Transient dimensionless axial velocity distr ibution 
for a - -0 .1 ,  Pr=  10, and n = 1 . 2  

solutions appear to be independent of grid number of X-axis. 
The results agree well with grid number of y = 61. It also 
demonstrates that cubic spline approximation saves much CPU 
time. The present calculations in the absence of magnetic field 
are in good agreement with the results of Yao. Therefore, the 
present results should have a relatively high degree of accuracy, 
although no available precise results can be compared with the 
present calculations. The numerical results are presented for 

= a sin(2~rx) to demonstrate the advantage of the transforma- 
tion method. Figures 2a and b and Figure 3 represent the 
transient axial velocity distribution for Pr = 0.1 and 10, n = 1.2 
and 0.8. With the increase of n, the peak value of axial velocity 
increases, but the velocity boundary layer becomes thinner. The 
effects of n on the transient temperature distribution with Pr = 
0.1 and a = 0.1 are shown in Figure 4a and b. It demonstrates 
that the dilatant fluid (n = 1.2) has a thinner thermal boundary 
layer. The transient local heat transfer coefficient distributions 
for Pr = 0.1, ot = 0.1, n = 0.8, and 1.2 are shown in Figure 5a and 
b. It shows that the peak of the heat transfer rate after one 
wavelength from the leading edge is shifted slightly upstream 
from the trough and the crest. Downstream the heat transfer 
varies according to the orientation of the surface. For a = 0.1, 
n = 0.8, and 1.2, the transient averaged heat transfer coefficient 
are plotted in Figure 6a and b. The averaged Nusselt number per 
unit wavelength is defined as 

foXm~ Ng~ dx 
(31) 

The total heat transfer rate for a wavy surface, considering larger 
heat transfer area, is about the same as that of a flat plate. The 
influences of wave amplitude on heat transfer characteristics are 
examined, as shown in Figure 7a and b. With constant magnetic 
strength Mg~ = 1.0, Pr = 0.1, n = 1.2, and 0.8, increasing the wave 
amplitude c~ from 0.0 to 0.2 will decrease the averaged Nusselt 
number. The effects of magnetic field strength are presented in 
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Figure 8a and b. In the case of the absence of a magnetic field, 
averaged Nusselt number approaches a minimum value, then it 
increases as time increases. The above trend is not obvious in the 
case of large Prandtl number. Figure 9a and b display the effect 
of Prandtl number on the averaged Nusselt number. In the case 
of large Prandtl number, the average Nusselt number per unit 
wave length is higher than the low Prandtl number. 

(a) 
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0.60 

0 

0.40 

0.20 ===b, l t= )  

O.O0 3.00 6.00 9.00 12.00 15.00 

Y(x= 1.oo) 
Figure 4 (a) Transient dimensionless temperature distribu- 
tion for a=O.1,  Pr=0.1,  and n-----0.8; (b) transient dimen- 
sionless temperature distr ibution for ~=0 .1 ,  Pr=O.1, and 
n = 1 . 2  
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Figure 5 (a) Trans ient  local heat t ransfer  coef f ic ient  distr i-  
but ion for ~ = 0 . 1 ,  P r : O . 1 ,  and n=O.8 ;  (b) t rans ient  local 
heat t ransfer  coef f ic ient  d is t r ibut ion for ¢x :  0.1, P r :  0.1, and 
n : 1 . 2  

(b) 

Pr=O.1 
Mgr= 1.0 

= = 0 . 1  
n = 1.2 

1.0 

0.1 i I , I i I i 
0.00 1.00 2.00 3.00 4.00 

X 
Figure 6 (a) Transient  average heat t ransfer  coeff ic ient  dis- 
t r ibut ion for c~=0.1, P r = 0 . 1 ,  and n=O.8 ;  (b) t rans ient  aver- 
age heat t ransfer  coeff ic ient  d is t r ibut ion for e¢= 0.1, Pr = 0.1, 
and n =  1.2 
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Figure 7 (a) Average Nusselt number distribution for differ- 
ent wave amplitude Pr=0.1 and n=0.8;  (b) average Nusselt 
number distribution for different wave amplitude Pr----0.1 
and n--- 1.2 
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Figure 8 (a) Average Nusselt number distribution for differ- 
ent magnetic strength, Pr--0.1 and n=0.8;  (b) average 
Nusselt number distribution for different magnetic strength 
Pr--0.1 and n=1.2  
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Figure 9 (a) Average Nussel t  number  d is t r ibut ion for differ- 
ent  Prandtl  number  n = 0 . 8 ;  (b) average Nussel t  number  
d ist r ibut ion for d i f ferent  Prandtl  number  n = 1.2 

C o n c l u s i o n s  

A Prandtl transformation method is applied to study the tran- 
sient free convection of a non-Newtonian fluid along a wavy 
surface. A sinusoidal surface 8 = o~ sin(2~rx) is used to demon- 
strate the advantages of the transformation method and to 
present the heat transfer mechanism near such surfaces. It is also 
shown that the magnetic field can be used to control the flow 
characteristics. 
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